| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |
- 클론코딩
- expo
- GYM
- 카트폴
- 리액트네이티브
- ReactNative
- 강화학습 기초
- python
- React
- JavaScript
- 딥러닝
- coding
- 앱개발
- selenium
- Reinforcement Learning
- 전국국밥
- redux
- pandas
- 조코딩
- App
- Ros
- kaggle
- 사이드프로젝트
- 데이터분석
- FirebaseV9
- Instagrame clone
- 머신러닝
- TeachagleMachine
- 강화학습
- clone coding
- Today
- Total
목록a3c (2)
qcoding
** 이번 실습은 이전 A2C 실습 중 Continuos A2C를 사용했던 것을 A3C로 변경한 것이다. 기본적인 내용은 Continuos A2C 과 동일하며, A3C로 확장할 수 있게 Global Network와 Local Network 구조를 활용하였다. 2023.02.15 - [머신러닝 딥러닝] - [강화학습]Continuos A2C(연속적 A2C)_mountain Car [강화학습]Continuos A2C(연속적 A2C)_mountain Car * 이번 실습은 Continuos A2C 실습으로 아래의 Mountain Car Continuos 환경에 연속적 A2C알고리즘을 적용해보는 실습을 하였다. https://www.gymlibrary.dev/environments/classic_control/..
* 이번 실습은 A3C (Asynchronous Advantage Actor-Critic)에 대한 실습내용이다. 실습의 적용은 Cartpole과 Mountain Car에 적용하였으며, 결론적으로 Cartpole의 환경에서만 문제를 해결하였다. 현재까지 실습을 진행한 알고리즘을 정리하면 - > value_based (dqn) -> Policy_based (Reinforce / TD1step - A2C / TD1step - Continuos A2C ) 이며, Mountain Car 환경이 성공한 것은 off-policy value_based인 dqn 알고리즘이다. Mountain car와 같이 즉각적인 보상이 아닌 goal에 도착했을 때 큰 보상을 얻는 환경의 경우 on-policy알고리즘으로 action을..