일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- FirebaseV9
- JavaScript
- clone coding
- 앱개발
- 강화학습 기초
- python
- React
- coding
- 크롤링
- 클론코딩
- Instagrame clone
- 정치인
- 카트폴
- 딥러닝
- ReactNative
- redux
- expo
- App
- 조코딩
- 강화학습
- TeachagleMachine
- pandas
- 데이터분석
- selenium
- 머신러닝
- kaggle
- Ros
- 리액트네이티브
- 전국국밥
- 사이드프로젝트
- Today
- Total
목록cartpole (2)
qcoding

* 이번 실습은 A3C (Asynchronous Advantage Actor-Critic)에 대한 실습내용이다. 실습의 적용은 Cartpole과 Mountain Car에 적용하였으며, 결론적으로 Cartpole의 환경에서만 문제를 해결하였다. 현재까지 실습을 진행한 알고리즘을 정리하면 - > value_based (dqn) -> Policy_based (Reinforce / TD1step - A2C / TD1step - Continuos A2C ) 이며, Mountain Car 환경이 성공한 것은 off-policy value_based인 dqn 알고리즘이다. Mountain car와 같이 즉각적인 보상이 아닌 goal에 도착했을 때 큰 보상을 얻는 환경의 경우 on-policy알고리즘으로 action을..

* 이번 실습에서는 Actor-Critic 알고리즘을 통해 Mountain Car 문제를 해결해 보는 시간으로 Reinforce 알고리즘을 통해 Mountain Car 문제가 해결되지 않았으므로 이방법을 통해서 해결이 가능한 지 확인해 보는 Policy Based의 연장선이다. Actor-critc은 value / policy 학습을 둘 다 진행하는 것으로 인공신경망을 통해 가치함수와 정책함수를 둘다 근사하는 것이 특징이다. * 결론부터 말하면 Cartpole은 잘되지만, 역시나 Mountain Car은 잘되지 않았다. 이번실습은 아래와 같은 순서로 진행된다. 1. A2C 에 대한 간략한 이론 2. A2C의 알고리즘 구조 3. A2C CartPole / Mountain car 코드 및 리뷰 4. 평가결과..